Какой из примеров не является прямым измерением. Косвенные измерения

Прямые измерения

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямые измерения" в других словарях:

    ПРЯМЫЕ ИЗМЕРЕНИЯ - – измерения, при которых мера или прибор применяются непосредственно для измерения данной величины … Современный образовательный процесс: основные понятия и термины

    Прямые измерения изменения коэффициента масштабного преобразования ПМП (дифференциального затухания переменного аттенюатора) - Измерение отношения мощностей на выходе ПМП (переменного аттенюатора) с помощью ИО при идеально стабильном генераторе 1 генератор; 2 ПМП; 3 ИО Источник …

    Прямые измерения коэффициента масштабного преобразования ПМФ (коэффициента передачи К П M - Измерение с помощью ВПМ отношения мощностей на выходе идеально стабильного генератора при отсутствии (P1) и при наличии (Р2) между ними ПМФ (калиброванного аттенюатора) 1 генератор; 2 ПМФ (аттенюатор); 3 ВПМ; Источник … Словарь-справочник терминов нормативно-технической документации

    Прямые измерения мощности (или напряжения) ВПМ (или вольтметром) - 1 генератор; 2 ВПМ или вольтметр Источник … Словарь-справочник терминов нормативно-технической документации

    Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера

    ГОСТ Р 8.736-2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения - Терминология ГОСТ Р 8.736 2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения оригинал документа: 3.11 грубая погрешность измерения: Погрешность… … Словарь-справочник терминов нормативно-технической документации

    Погрешность измерения - разность между измеренным и истинным или заданным значением параметра. Источник: НПБ 168 97*: Карабин пожарный. Общие технические требования. Методы испытаний 3.11 погрешность измерения: Отклонение результата измерения от действительного значения … Словарь-справочник терминов нормативно-технической документации

    результат измерения - 3.5 результат измерения: Значение параметра, полученное после проведения измерения. Источник: ГОСТ Р 52205 2004: Угли каменные. Метод спектрометрического определения генетических и технологических параметров … Словарь-справочник терминов нормативно-технической документации

    результат измерения физической величины; результат измерения; результат - результат измерения физической величины; результат измерения; результат: Значение величины, полученное путем ее измерения. [Рекомендации по межгосударственной стандартизации , статья 8.1] Источник … Словарь-справочник терминов нормативно-технической документации

    грубая погрешность измерения - 3.11 грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Методы и средства измерения скорости звука в море , И. И. Микушин , Г. Н. Серавин , Книга содержит систематизированное описание современных методов и судовых средств измерения скорости звука в морской воде. В ней подробно рассмотрены прямые методы измерения скорости звука -… Категория: Научная и техническая литература Издатель: Судостроение , Производитель:

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:

– метод непосредственной оценки;

– метод сравнения с мерой;

– метод противопоставления;

– метод дифференциальный;

– метод нулевой;

– метод замещения;

– метод совпадений.

По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.

В зависимости от рода измеряемой величины,
условий проведения измерений и приемов
обработки экспериментальных данных
измерения могут классифицироваться с
различных точек зрения.
С точки зрения общих приемов получения
результатов они разделены на четыре класса:
прямые;
косвенные;
совокупные;
совместные.

Прямое измерение

Косвенное измерение

Косвенные измерения относятся к явлениям, которые непосредственно не
воспринимаются органами чувств и познание которых требует
экспериментальных устройств. Исторической предпосылкой косвенных
измерений было открытие закономерных связей и единства различных
явлений в отдельных областях природы и во всей природе в целом, что
привело к установлению закономерных связей между различными
физическими величинами.

Совокупные измерения

При этом для определения значений искомых
величин число уравнений должно быть не меньше
числа величин. Примером совокупных измерений
являются измерения, когда значение массы
отдельных гирь из набора определяют по
известному значению массы одной из гирь и по
результатам измерений масс различных сочетаний
гирь.

Совместные измерения

В настоящее время все измерения в соответствии с
физическими законами, используемыми при их
проведении, сгруппированы в 13 видов измерений. Им
в соответствии с классификацией были присвоены
двухразрядные коды видов измерений: геометрические
(27), механические (28), расхода, вместимости, уровня
(29), давления и вакуума (30), физико-химические (31),
температурные и теплофизические (32), времени и
частоты (33), электрические и магнитные (34),
радиоэлектронные (35), виброакустические (36),
оптические (37), параметров ионизирующих излучений
(38), биомедицинские (39).

10.

По физическому смыслу измерения можно было бы
делить на прямые и косвенные.
По числу измерений одной и той же величины
измерения делятся на однократные и
многократные. От числа измерений зависит
методика обработки экспериментальных данных.
При многократных наблюдениях для получения
результата измерений приходится прибегать к
статистической обработке результатов наблюдений.
По характеру изменения измеряемой величины в
процессе измерений они делятся на статические и
динамические (величина изменяется в процессе
измерений).

11.

По отношению к основным единицам измерения делятся на
абсолютные и относительные.
Абсолютное измерение – измерение, основанное на прямых
измерениях одной или нескольких основных величин и (или)
использовании значений физических констант. Например,
измерение силы F = mg основано на измерении основной
величины – массы m и использовании физической постоянной
g.
Относительное измерение – измерение отношения величины
к одноименной величине, играющей роль единицы, или
измерение изменения величины по отношению к одноименной
величине, принимаемой за исходную. Например, измерение
активности радионуклида в источнике по отношению к
активности радионуклида в однотипном источнике,
аттестованной в качестве эталонной меры активности.
Существуют и другие классификации измерений, например, по
связи с объектом (контактные и бесконтактные), по условиям
измерений (равноточные и неравноточные).

12.

13.

14.

Методы можно классифицировать по различным признакам.
1. Используемый физический принцип. По нему методы измерений
разделяют на оптические, механические, акустические,
электрические, магнитные и так далее.
2. Режим изменения во времени измерительного сигнала. В
соответствии с ним все методы измерений разделяют на статические
и динамические.
3. Способ взаимодействия средства и объекта измерений. По этому
признаку методы измерений разделяют на контактные и
бесконтактные.
4. Применяемый в средстве измерений вид измерительных сигналов.
В соответствии с ним методы разделяют на аналоговые и цифровые.

15.

Метод непосредственной оценки
Метод измерений, при котором значение величины
определяют непосредственно по показывающему
средству измерений.
Метод сравнения с мерой имеет ряд разновидностей:
метод замещения, метод дополнения, дифференциальный
метод и нулевой метод.

16.

17.

Исключение погрешности измерительного прибора из результата измерений
является новым достоинством метода замещения. Таким образом методом
замещения можно осуществить точное измерение, имея прибор с большой
погрешностью.

18.

Метод замещения является самым точным из всех
известных методов и обычно используется для
проведения наиболее точных (прецизионных)
измерений. Ярким примером метода замещения
является взвешивание с поочередным
помещением измеряемой массы и гирь на одну и
ту же чашку весов (вспомните - на один и тот же
вход прибора). Известно, что таким методом
можно правильно измерить массу тела, имея
неверные весы (погрешность прибора), но никак
не гири! (погрешность меры).

19.

Пример, иногда может быть более точным измерение
массы, при котором уравновешивают гирю, значение
которой известно с высокой точностью, измеряемой
массой и набором более легких гирь, помещенными на
другую чашку весов.

20.

Частным случаем дифференциального метода является нулевой метод
измерений - метод измерений, где в результате эффект действия
измеряемой величины и меры на компаратор доводят до нуля.
В дифференциальном методе погрешность представляет собой
погрешность измерения разности меры и измеряемой
величины. Для получения большой точности измерения
нулевым и дифференциальным методом необходимо, чтобы
погрешности измерительных приборов были невелики.

21.

Сравнивая между собой метод сравнения и метод
непосредственной оценки, мы обнаружим их
разительное сходство. Действительно, метод
непосредственной оценки по своей сути представляет
метод замещения. Почему он выделен в отдельный
метод? Все дело в том, что при измерении методом
непосредственной оценки мы выполняем только
первую операцию – определение показаний. Вторая
операция – градуировка (сравнение с мерой)
производится не при каждом измерении, а лишь в
процессе производства прибора и при его
периодических поверках. Между применением
прибора и его предыдущей поверкой может лежать
большой интервал времени, а погрешность
измерительного прибора за это время может
значительно измениться. Это и приводит к тому, что
метод непосредственной оценки дает обычно меньшую
точность измерения, чем метод сравнения.

22.

A
Градуировочная характеристика (зависимость оптической плотности от концентрации) строится по
стандартным образцам с известной концентрацией

23.

1
3
6 8
9
10
11
6
2
5
7
4
газовый тракт
Блок-схема ХЛ газоанализатора: 1 - заборный
патрубок; 2 - ротаметр, 3 - газовый
коммутатор, 4 - фильтр-поглотитель, 5 калибратор,6 - ХЛ-реактор, 7 - насос, 8 ФЭУ, 9 - усилитель, 10 - процессор, 11 индикатор.

24.

25. Стадии аналитического процесса - отбор пробы, подготовка пробы, измерение и обработка результатов - являются равнозначными

звеньями цепи, каждое из которых несет в себе объективные
и субъективные источники погрешности

1.Методы измерения:прямые и косвенные.Прямые -когда измеряется непосредственно сама измеряемая величина.(измерение темп ртутным термометром)Косвенное -когда измеряется не сама изм.вел. а величины функционально связанные с нею.(измеряют U и R а затем рассчитывают I) По принципу методы измерения делят на: 1Метод непосредственной оценки (измерение длины метром).2Метод сравнения с мерой (измерение массы груза с помощью образцовых гирь)Мера -тех.средство высокой точности измерения. 3Дифференциальный метод -при этом методе измеряется не сама изм.вел R x а ее отклонение от заданной величины R 0 .Для измерения используется специальная мостовая схема кот состоит из 4плеч: R x, R 0 , R 1 , R 2 . В схеме всегда R 1 =R 2 .Балластные сопротивления для повышения точности измерения: СД-диаганаль питания, АВ-измерительная диаганаль.Измерит схема находится в равновесии т.е потенциалы точек АиВ равны(φ А = φ В)Если выполняется условие R x R 2 =R 0 R 1 если R x =R 0 схема находится в равновесии.Если Rx отличается от R 0 то потенциал т.А отличается от потенциала т.В разность потенциалов= ∆φ= φ А -φ В (измеряется прибором).R 0 может состоять из нескольких последовательно включенных сопротивлений разной величины.Такое устройство наз магазином сопротивлений. 4Нулевой метод -при этом методе в качестве изм.прибора используется гальванометр,кот определяет разность потенциалов в изм.диаганале.Если измеряемой сопротивление R x отличается от R 0 то появляется разность потенциалов и перемещая ползунок R 0 добиваются чтобы гальванометр показывал 0.по положению ползунка и шкале определяют значение R x .5Компенсационные метод (является разновидностью нулевого и еще наз методом силовой компенсации)Разность потенциалов усиливается электронным усилителем и постоупает на реверсивный электродвигатель кот начинает перемещать ползунок R 0 и стрелку ук-теля до тех пор пока не сравняются потенциалы точек АиВ.

2.Погрешность измерения делится на Абсалютную,Относительную, Приведенную.1.Абсалютная погрешность -разность между значениями измеряемой величины и ее действит.значением.За дествит.значение принимается показания образцового прибора. ∆ абс =±(А изм -А дейст).2Приведенная -отношениеабсалютной погрешности к нормированному значению,выражается в %. ∆ прив = ∆ абс /N*100.3.Относительная -отношение абсолютной погрешности к измеренной величине,выражается в %.Погрешности могут систематич (обусловлена конструкцией прибора и не зависит от внешних факторов)случайная (зависит от условий измерения,изменение параметров окр.среды,питания)промах (вызвана неправильными действиями оператора)Допустимые погрешности ограничиваются классом точности прибора.Он определяетяс заводом изготовителем и указывается на шкале прибора или в его паспорте. Класс точности-обощенная хар-ка прибора,ограничивающая систематич и случайные погрешности.(1;1,5;2;2,5;3;4)10 n .n-ук-тель степени,единица илиотриц число..Чем не выше цифра класса точности,тем ниже точность измерения(ртутный термометр показвает темп 21,5 а показание образцового термометра-21,9. = ∆ абс /А изм *100%-относительная погрешность.К=∆ абс /N*100%-приведенная погрешность.

3.Автоматич контроль (АК)-задачей является измерение параметров техпроцесса и отображение инфы о текущем значении параметра показывающими и регистрирующими приборами.При автоматич контроле средства автоматизации не вмешиваются в управление техпроцессом даже при создании аварийной ситуации..АК может быть местным и дистанционным.При местном АК датчики и первич. Преобразователи устанавливаются непосредственно на тех.оборудовании.Показывающин приборы могут находиться на оборудовании а регистрирующие на местных щитах кот размещены на раб.месте ОТП. Дистанционный контроль упрощает управлениетехпроцессом.На раб.месте ОТП на щите расположены средства ДУ регулирующими органами(GLE-c этой панели оператор может изменить положение регулирующего органа и по прибору на этой панели контролировать насколько % открылся/закрылся регулирующий орган а по вторичному прибору наблюдать как изменилось значение контролируемого параметра. Автоматич сигнализация- предназначена для сигнализации отклонений значений параметра от заданного значения.Бывает световая и звуковая.Световая(выполняется пневматич или электрич лампами) Звуковая(электрич звонками,сиренами и ревунами).Сигнализация может быть технологич и аварийной.Технологич-предупреждает ОТП что параметр отклонился от нормы.Аварийная-техпроцесс приближается к аварийному состоянию.Используют сирены и ревуны.

4.Автоматич регулирование.САР предназначена для содержания регулируемого параметра на заданном уровне с заданной точностью длительное время.САР работает по след алгоритму:ПП получает онформацию о текущем значении регулируемого параметра и преобразует в унифиц сигнал.Тот поступает на ВП для отображения информации и на АР.АР сравнивает полученную инфу с заданием определяет величину и знак рассогласования и в соответствии с выбранным законом регулирования управляющее воздействие поступает на регулирующий орган кот изменяет энергетичи или технологич потоки и возвращает регулируемую величину к заданному значению.ОТП непосредственно не участчует в упралении а только наблюдает за ходом техпроцесса и при необходимости изменяет задание на АР

Косвенными измерениями называют такие измерения, при которых искомое значение величины находят расчетом на основе измерения других величин, связанных с измеряемой величиной известной зависимостью

А = f(a 1 , …, a m). (1)

Результатом косвенного измерения является оценка величины А, которую находят подстановкой в формулу (1) оценок аргументов а i .

Поскольку каждый из аргументов а i измеряется с некоторой погрешностью, то задача оценивания погрешности результата сводится к суммированию погрешностей измерения аргументов. Однако особенность косвенных измерений состоит в том, что вклад отдельных погрешностей измерения аргументов в погрешность результата зависит от вида функции A .

Для оценки погрешностей важное значение имеет подразделение косвенных измерений на линейные и нелинейные косвенные измерения.

При линейных косвенных измерениях уравнение измерений имеет вид

где b i - постоянные коэффициенты при аргументах а i .

Любые другие функциональные зависимости относятся к нелинейным косвенным измерениям.

Результат линейного косвенного измерения вычисляют по формуле (2), подставляя в нее измеренные значения аргументов.

Погрешности измерения аргументов могут быть заданы своими границами Dа i либо доверительными границами Dа(P) i с доверительными вероятностями Р i .

При малом числе аргументов (меньше пяти) простая оценка погрешности результата DA получается суммированием предельных погрешностей (без учета знака), т.е. подстановкой границ Dа 1 , Dа 2 , ... , Dа m в выражение

Dа 1 + Dа 2 + ... + Dа m . (3)

Однако эта оценка является излишне завышенной, поскольку такое суммирование фактически означает, что погрешности измерения всех аргументов одновременно имеют максимальное значение и совпадают по знаку. Вероятность такого совпадения исключительно мала и практически равна нулю.

Для нахождения более реалистичной оценки переходят к статистическому суммированию погрешностей аргументов.

Нелинейные косвенные измерения характеризуются тем, что результаты измерений аргументов подвергаются функциональным преобразованиям. Но, как показано в теории вероятностей, любые, даже простейшие функциональные преобразования случайных величин, приводят к изменению законов их распределения.

При сложной функции (1) и, в особенности, если это функция нескольких аргументов, отыскание закона распределения погрешности результата связано со значительными математическими трудностями. Поэтому при нелинейных косвенных измерениях не используют интервальные оценки погрешности результата, ограничиваясь приближенной верхней оценкой ее границ. В основе приближенного оценивания погрешности нелинейных косвенных измерений лежит линеаризация функции (1) и дальнейшая обработка результатов аналогично тому, как расчет выполняется при линейных измерениях.

В этом случае выражение для полного дифференциала функции А будет иметь вид:

Как следует из определения, полный дифференциал функции – это приращение функции, вызванное малыми приращениями ее аргументов.

Учитывая, что погрешности измерения аргументов всегда являются малыми величинами по сравнению с номинальными значениями аргументов, можно заменить в (4) дифференциалы аргументов da i на погрешности измерений Dа i , а дифференциал функции dA - на погрешность результата измерения DA . Тогда получим

Проанализировав зависимость (5), можно сформулировать ряд относительно простых правил оценивания погрешности результата при косвенных измерениях.

Правило 1. Погрешности в суммах и разностях.

Если а 1 и а 2 измерены с погрешностями Dа 1 и Dа 2 и измеренные значения используются для вычисления суммы или разности А = Dа 1 ± Dа 2 , то суммируются абсолютные погрешности (без учета знака).